Valley incision by debris flows: Evidence of a topographic signature
نویسندگان
چکیده
[1] The sculpture of valleys by flowing water is widely recognized, and simplified models of incision by this process (e.g., the stream power law) are the basis for most recent landscape evolution models. Under steady state conditions a stream power law predicts that channel slope varies as an inverse power law of drainage area. Using both contour maps and laser altimetry, we find that this inverse power law rarely extends to slopes greater than 0.03 to 0.10, values below which debris flows rarely travel. Instead, with decreasing drainage area the rate of increase in slope declines, leading to a curved relationship on a log-log plot of slope against drainage area. Fieldwork in the western United States and Taiwan indicates that debris flow incision of bedrock valley floors tends to terminate upstream of where strath terraces begin and where areaslope data follow fluvial power laws. These observations lead us to propose that the steeper portions of unglaciated valley networks of landscapes steep enough to produce mass failures are predominately cut by debris flows, whose topographic signature is an area-slope plot that curves in log-log space. This matters greatly as valleys with curved area-slope plots are both extensive by length (>80% of large steepland basins) and comprise large fractions of main stem valley relief (25–100%). As a consequence, valleys carved by debris flows, not rivers, bound most hillslopes in unglaciated steeplands. Debris flow scour of these valleys appears to limit the height of some mountains to substantially lower elevations than river incision laws would predict, an effect absent in current landscape evolution models. We anticipate that an understanding of debris flow incision, for which we currently lack even an empirical expression, would substantially change model results and inferences drawn about linkages between landscape morphology and tectonics, climate, and geology.
منابع مشابه
Ice-driven Degradation Styles in the Martian Mid-latitudes: Constraints from Lobate Debris Aprons, Lineated Valley Fill, and Small Flow Lobes
Introduction. The Martian mid-latitudes are regions of high scientific interest given recent descriptions of mantling deposits and glacial features believed to be relicts of recent ice ages on Mars [1-4]. Geomorphic indicators of ground ice have long been proposed to be concentrated in mid-latitude zones based on analyses of such features as lobate debris aprons, lineated valley fill, and conce...
متن کاملLineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: Evidence for phases of glacial modification of the dichotomy boundary
[1] The Nilosyrtis Mensae region is important among dichotomy boundary fretted terrain outcrops, as it provides evidence of overprinting of ancient landscapes by a suite of glacial features, providing a composite view of the variety of midlatitude glacial modification processes that can occur during recent Martian ice ages. On the basis of a series of criteria developed for the identification o...
متن کاملCalibration of numerical models for small debris flows in Yosemite Valley, California, USA
This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the de...
متن کاملDebris dams and the relief of headwater streams
In forested, mountain landscapes where debris flows are common, their deposition commonly forms valley-spanning dams of wood, boulders, or complex mixtures of both in headwater valleys. Sediment impoundment behind these dams causes alluviation in what would otherwise be bedrock channels. In this paper, the effects of debris dams on the evolution of headwater valley profiles over geologic time a...
متن کاملQuaternary deposits and landscape evolution of the central Blue Ridge of Virginia
A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometric...
متن کامل